Kategorie-Archiv: Reparatur

Reparatur Spindelarretierung Ferm FBF1050E Oberfräse

Ich habe eine gebrauchte Oberfräse erworben, die einen Riss am Gehäuse der Spindelarretierung hatte.

Genau die gleiche Maschine habe ich noch einmal mit dem gleichen Problem. Das Zinkgussteil ist sehr spröde und brüchig, die Bruchkanten sind dunkelgrau und nicht metallisch blank. Natürlich ist da schon sehr lange keine Garantie mehr drauf. Ohne Spindelarretierung lassen sich aber keine Werkzeuge mehr einspannen.

Daher habe ich das kaputte Teil ausgemessen und nachkonstruiert.

Spindelarretierung

Original und Ersatzteil. Den unteren Rand habe ich verstärkt. Die maße sind knapp, eventuell muss man beim nachdrucken etwas mit der xy-korrektur arbeiten.

Spindelarretierung

Das Ersatzteil an der Maschine.

Spindelarretierung

Jetzt muss sich zeigen, ob es stabil genug ist.

Bauknecht Kühlschrank kaputt. Erstmal Mikrocontroller dazu tun (Teil 3)

Seit dem letzten Beitrag hier ist ja schon einige Zeit ins Land gegangen. Also was ist aus dem Kühlschrank denn geworden?

Nun, er lebt wieder.

Am Ende ziehe ich noch ein Fazit mit einem kleinen Schlaglicht auf die Wirtschaftlichkeit des Altgerätes.

Doch nun zur neuen Hardware. Zunächst also einmal zusammengesucht was gebraucht wird. Das Relais aus der provisorischen Steckbrettschaltung hat nun2 Wochen problemlos seinen Dienst verrichtet und scheint dem Anlaufstrom des Kompressormotors gewachsen zu sein, also übernehme ich dieses in die endgültige Elektronik.

kselektronik

Die Stromversorgung soll das Innenleben eines billigen Steckernetzteils übernehmen. Das Netzteil hat interessanterweise den Footprint für eine USB-Buchse auf der Platine, dafür aber wenig bis gar keine Maßnahmen zur Funkentstörung. Besonders über die Ausgangsleitung in UKW-Antennenlänge kann da abgestrahlt werden. Ich rüste zumindest einen Keramikkondensator nach sowie eine Entstördrossel am Eingang meiner Elektronik, die Leitung wird auch deutlich kürzer werden. Weiterlesen

Bauknecht Kühlschrank kaputt. Erstmal Mikrocontroller dazu tun (Teil 2)

Warum eigentlich ein Mikrocontroller?

Der war gerade da. Es ist (im Gegensatz zum analogen Aufbau) unproblematisch seine grundlegende Funktion und Parameter nach Bedarf beliebig anzupassen.

Da ich mit dem Bauen von Kühlmöbeln keine Erfahrung habe, wird sich die Anpassbarkeit als nützlich erweisen.

Auf dem Arduino Uno ist ein Atmega 328 (oder 168 beim billigsten pro mini), der einen integrierten ADC mit 10 bit Auflösung besitzt. Bei Verwendung der interen Referenz und 5V und LM35 Temperaturfühlern mit 10mV/K lässt sich damit theoretisch auf ca. ein halbes °C genau messen. Das reicht für diesen Zweck aus.

arduino am kühlschrank

Zwei Eingänge lesen die Temperaturfühler ein, ein dritter bekommt ein Poti zum manuellen Nachstellen der Kühlleistung (Sommer/Winter oder andere Notwendigkeiten) ohne das Programm ändern zu müssen.

Der Motorstrom wird über ein 5V Relais geschaltet, welches „1/8 HP“ und 6A aufgedruckt hat. Über den Kontakt habe ich zur Entstörung einen 250V Varistor gelötet, die Spule bekommt eine Freilaufdiode und wird über einen NPN-Transistor vom Mikrokontroller geschaltet.

Als Zusatzfunktion gibts eine helle Alarm-LED die rot Blinkt wenn es im Kühlschrank wieder erwarten zu warm ist. Dies wird mit dem zweiten Fühler im Kühlraum überwacht.

Die Fühlerleitungen werden jeweils über 1uF Elkos direkt am ADC Eingang stabilisiert.
Die verwendeten billigen LM335 sind die aussortierten LM35 Sensoren die nicht so gut geworden sind. Hier muss man also selbst dafür sorgen, das Sensor-offset entsprechend zu korrigieren. Dafür habe ich ein LC-Display angeschlossen um im experimentellen Status Diagnosedaten angezeigt zu bekommen. (Nicht in der Schaltzeichnung enthalten, Pinbelegung siehe .ino Datei)

Schaltung

Was zeigt das 2×16 Display an?
Links oben die Verdampfertemperatur, Links unten die Kühlraumtemperatur, Rechts oben „M0“ oder „M1“ ob der Motor angesteuert ist, und unten den Temperaturoffset vom Poti, um wieviel Grad die Abschalttemperatur zusätzlich durch Potieinstellung in Richtung „kalt“ verschoben wurde.
Die Temperaturen sind der Einfachheit gleich in Kelvin, da gibts keine Probleme mit dem Nullpunkt und negativen zahlen, und man kann die Werte gleich 1:1 mit der Spannung mit einem DMM nachmessen.

Damit sind wir bei den Fehlerquellen: die billigen LM335 können mehrere Grad Offset haben, meist sind die aber deutlich besser als das Datenblatt garantiert, wodurch es sich eher nicht lohnt die teureren selektierten LM35 zu kaufen. Eine größere Fehlerquelle ist die Betriebsspannung des Mikrocontroller, die ja gleichzeitig die Referenz für den ADC ist. Läuft die Referenz davon, während die Temperaturfühlerspannungen stabil bleiben, verschiebt sich die Temperatur um ein paar Grad.
Beim ersten versuch mit einer Powerbank hatte ich genau 5V, da stimmten die Temperaturen, über Nacht hatte ich dann ein Samsung-Ladenetzteil angesteckt, welches fast 5,2V liefert, wodurch die Temperaturmesswerte um mehrere Grad daneben lagen.
Hier liegt Optimierungspotenzial, man könnte die ADC-Referenz mit einem TL431 erzeugen (z.B. auf 3,5V) und dabei gleichzeitig die Auflösung noch etwas verbessern.

Ich verzichte darauf. Grundlegend ist eine stabile Spannungsversorgung wichtig damit die Fühlerwerte stabil stehen, deshalb ist ein Elko auf der 5V schiene Pflicht. Ich habe 220uF verwendet. Nach dem Anschließen des später zu verwendenden Netzteils (und damit welche Spannung genau anliegt) kann man mit einem Multimeter die ADC_Eingänge nachmessen und mit dem Kelvin-Temperaturwerten im Display vergleichen. Im Arduino-Sketch kann dann ein Offset für die Messung eingetragen werden um die Fühler auf Linie zu bringen.

Danach wird die Temperatureinstellung nur noch mit dem Poti auf Wunsch abgeglichen. Ein Min/Max Thermometer mitten im Kühlraum ist hilfreich, die Werte sollten etwa zwischen 1°C und 10°C pendeln.

Wie gehts weiter?

Die ganze Sache wird jetzt ein paar Tage im Probebetrieb laufen um ggf noch hier und da was daran zu fummeln. Bei Zufriedenheit folgt dann ein angepasstes Gehäuse mit eingebautem Netzteil und Steuerung. Das Gehäuse soll hinten am Lüftungsgitter angeklipst werden.

Bauknecht Kühlschrank kaputt? Erstmal Mikrocontroller dazu tun.

Hallo mal wieder.
Was gibts neues? Kühlschrank kaputt. So mit Allem von „alles warm“ bis „aufgetaute Brühe läuft aus dem Tiefkühlfach“.

Hier zunächst eine Erkenntnis: Kein Typenschild am Gerät? Doch, das Typenschild gibts tatsächlich, bei meinem Innen an der Seitenwand zu finden, nachdem man das Gemüsefach herausgezogen hat. (Ich habe es auch erst beim Saubermachen vor der Wiederinbetriebnahme gefunden)

Kühlschrankaggregat

Für die Suchmaschinenbenutzer: Das Kälteaggregat ist IRE PB6AF86.
Am Motor ist ein Klemmkasten mit thermischen Motorschutzschalter und Anlaufrelais darin, vorn eine Reihe Durchgangsklemmen.

Kompressorklemmkasten

Rechts kommt die Zuleitung von der Steckdose (violett), weiter gehts mit der vieradrigen Leitung (orange). Hier kommt der braune Draht mit dem Strom, und läuft auf einen Schaltkontakt im Thermostat, der bei „0“ den Strom generell abschaltet. Von diesem Schaltkontakt gehts auf die Glühlampe im Gerät (weiße Ader) und zurück zum Klemmkasten auf die ganz schmale Schiene am linken Rand. Zusätzlich kommt vom Thermostat eine schwarze Ader, die Spannungsführend ist wenn der Kompressormotor laufen soll.

Mir unbekannt ist die rot markierte 2adrige Leitung, die in parallel zum Motorschaltkontakt im Thermostat angeschlossen ist und in der Kühlschrankisolierung verschwindet. Wenn das jemand erkennt, kann er vielleicht einen Hinweis in die Kommentare unter diesem Eintrag hinterlassen. Irgendwie fehlt mir hier noch ein Motorkondensator, aber daran will ich mich nicht weiter aufhalten. Experimentell war zumindest erfolgreich festzustellen, das der Motor läuft wenn man von die „weiße“ und „schwarze“ verteilschiene brückt, das Anlaufrelais funktionierte auch, was man am Laufgeräusch direkt nach dem Einschalten hören kann (erste halbe Sekunde).

Der Fehler ließ sich darauf eingrenzen, das vom Thermostat kein Strom mehr auf der schwarzen Ader kommt, egal wie warm es ist und wie die Verstellung eingestellt ist.

Also zunächst eine Internetrecherche gemacht, wie funktioniert das eigentlich mit dieser Abtauautomatik?

Es gibt da mehrere Verfahren.
Eine Variante ist eine mechanische Schaltuhr im kühlschrank, die zyklisch die Kühlung ausschaltet zum Abtauen. Dabei kann eine zusätzliche elektrische Heizung im Kühlraum zur Einsatz kommen um den Abtauvorgang zu beschleunigen. Die Abtaufunktion wird relativ häufig (täglich) durchgeführt damit es schnell geht, da so jeweils nur wenig Eis abzuschmelzen ist.

(In Klimageräten mit Heizfunktion (split-klima) wird abgetaut durch Umkehr des Kühlkreislaufes, das können Kühlschränke für gewöhnlich nicht)

Etwas ambitionierter ist es, statt einer mechanischen elektromotorisch angetriebenen Schaltuhr eine elektronische Steuerung zu verwenden. (Hier kann man sich vorstellen das zusätzliche Sensorik möglich wird…)

Jetzt die Variante mit der einfachsten Ausführung: Es kommt ein Festwertthermostat in den Kühlschrank (mechanisch), bei dem die Einschalttemperatur des Kompressors bei +3,5 Grad liegt. Der Temperaturfühler wird dabei am Verdampfer angebracht.
Der Trick ist, das man mit dem Thermostat nur die Abschalttemperatur verstellen kann.

Durch die hohe Einschalttemperaturschwelle von deutlich über 0 grad taut der Verdampfer bei jedem Zyklus auf, aufgetautes Kondenswasser läuft durch die Schwerkraft nach unten ab und tropft auf die Verdampferschale auf dem Kompressormotorgehäuse. Danach wird je nach Thermostat-einstellung solange wieder gekühlt bis der Verdampfer auf -10..-25 grad abgekühlt ist.

Über die Temperaturträgheit des Kühlgutes stellt sich dann in den Lebensmitteln eine mittlere Temperatur ein die so etwa passt, während die Lufttemperatur im Kühlschrank um 10°C schwankt. (Kann man mit einem Min/Max Thermometer kontrollieren)

Mein Kühlschrank hat die letzere Variante eingebaut.

Kühlschrankthermostat

Ein kurzer Blick ins Netz nach Kühlschrankthermostaten als Ersatzteil erschlägt einen mit gefühlt 1000 verschiedenen Typen die nur in kleinen Details verschieden sind. Außerdem würde der Ersatz noch ein paar Tage auf sich warten lassen, da gerade das Wochenende beginnt.

Daher habe ich mich entschlossen basierend auf diesen Erkenntnissen eine elektronisches Thermostat selbst zu bauen.
Als Hardwareplattform für den Prototyp habe ich mich auf einen Arduino Uno entschieden.
Temperaturfühler werden zwei LM355 (LM35) im TO92 Gehäuse. Einer wird an der Kühlfläche am Verdampfer angebracht, genau an der Stelle an der das alte Thermostat gemessen hat. Der zweite ragt einfach so am Rand in den Kühlraum zu Zwecken die sich später noch ergeben.

Der Gummistopfen mit der Leitungsdurchführung zum Thermostat bekommt eine zusätzliche Bohrung an der stramm die neue Fühlerleitung hindurchpasst. Vom Klemmkasten wird ein mal 230V für ein kleines Netzteil für die Elektronik herausgelegt, und eine weitere 2adrige Leitung für den Schaltkontakt zum Einschalten des Kompressormotors.

Die Elektronik soll sicherheitshalber außerhalb des Kühlschranks montiert werden.

Falls sich jemand Fragt wie eigentlich das Thermostatgehäuse im Kühlschrank abgeht: im hinteren schmalen Bereich zur Rückwand hin lässt sich eine aufgerastete Abdeckung herunterclipsen, darunter befindet sich eine Befestigungsschraube. Nach Abschrauben der Abdeckung des Meßfühlers innen auf der Rückwand, kann das komplette Thermostatgehäuse 5mm nach hinten geschoben werden, was die vorderen Halteklammern löst.
Die Schrauben der zutage getretenen Blechklammer halten zugleich die Baugruppe zusammen.
Nach herausdrehen dieser und Abschrauben der Zentralmutter vom Thermostat kann dieses Entnommen werden. Das Verstellrad ist nur auf die Flachrundwelle vom Thermostat aufgesteckt.

Weiter im nächsten Beitrag in Kürze.

Waschmaschinenüberraschung

Nach ca 16 Jahren scheint meine Waschmaschine beim Schleudern langsam lauter und unruhiger zu werden. Auch wenn sie noch nicht das Wandern anfängt, denke ich ist es an der Zeit einmal die Stoßdämpfer zu tauschen.

Das eigentliche Problem der Maschine ist zunächst das Nachlassen der Elektrolytkondensatoren auf der Steuerungsplatine (da ist ein Schaltnetzteil mit drauf) gewesen, und dieses Jahr dann auch ab und an die Fehlermeldung „FP“ die anzeigt, das der Vorgang des abpumpens in ein Timeout gelaufen ist. Die Pumpe pumpte wunderbar, aber der Wasserhöhenschalter brauchte dann mal einen Schlag mit dem Schraubendrehergriff aufs Gehäuse, dann spielte es wieder ein paar Wochen.

Ansonsten zeigt die Maschine hier und da Anzeichen von Senilität, die aber mehr oder weniger selten sind. Ich denke die Maschine spielt noch ein paar Jahre, also einen gebrauchten Druckschalter besorgt, zwei neue Stoßdämpfer und auf Verdacht zwei neue Motorkohlen.

Die Stoßdämpfer sind nur billige Reibungsstoßdämpfer (auch im original) und werden am Waschbottich mit einem Bajonettverschluss befestigt, und am Rahmen auch nur angesteckt und mit einem Sicherungsclips in ihrer Position gehalten. Wechsel geht da soweit ohne Werkzeug. (Außer natürlich dem Werkzeug zum Abschrauben der Rückwand)

Etwas überrascht war ich jedoch, als ich beim Berühren des Gummibalges zwischen Waschbottich und Wasserpumpe ein metallisches Rasseln gehört habe.

Deshalb habe ich den Schlauch einmal gelöst und die Teile noch herausgeschüttelt, die sich da im Laufe der Jahre angesammelt haben. Eine ordentliche Sammlung.

Die Motorkohlen waren dann doch noch nicht einmal zur Hälfte verschlissen und dürfen noch ein paar Jahre drinn bleiben.
Die Druckdose ist bequem von oben erreichbar und auch werkzeuglos austauschbar.

Instandsetzung Druckschalter

Ich habe zwei defekte Druckschalter in die Hände bekommen, deren Hauptproblem mehr oder minder „nur“ war, das die luft nicht mehr in die Druckkammer kam, da der Anschlusstutzen komplett zugerostet war.
Die Druckschalter sind für geringen Druck (3bar) und unterscheiden sich nur durch die Auslegung der Spannfeder von denen für höhere Drücke.

Druckschalter defekt

Also erstmal versucht die Dinger auseinanderzuschrauben.

Druckschalter defekt

Hier sieht man schon so etwa das Problem.

Der Rost aus dem Rohranschluss ließ sich nur durch ausbohren entfernen.

Druckschalter defekt

Im Säurebad (Zitronensäure) wird der Rost Schicht für Schicht entfernt. Auch die Gummimembran muss in die Säure, da der Rost sich anders gar nicht mehr davon entfernen ließ.

Druckschalter defekt

Nach dem Entrosten zeigt sich eine zerklüftete Oberfläche. Die Gummimembran wurde wieder richtig sauber.

Druckschalter defekt

Damit das noch ein wenig hält, wird das entrostete Teil mit Rostschutzfarbe versiegelt.

Nähmaschinenreparatur

Da Hosen für meine kurzen Beine meist zu lang Hosenbeine haben und auch hier und da mal eine naht an einer Klamotte aufgeht, könnte man manchmal eine Nähmaschine brauchen.
Neulich stand auf einem Sperrmüllhaufen eine an der Straße.

Augenscheinlich war das Maschinchen soweit komplett, zumindest war das „Gaspedal“ mit dabei. Da ist sie mir schon in den Kofferraum gehüpft.

Es ist eine „AEG“ Maschine, also eine günstige Fernost-Nähmaschine die unter verschiedenen Markennamen für ~100-150 Euro verkauft wird und vermutlich von Janome hergestellt wurde.
Zunächst war auffällig, das am Gehäuse überall Spuren des Vorbesitzers zu sehen waren, der die Maschine offenbar mindestens schon einmal geöffnet hatte.
Dann kam heraus, das an der Unterfadenspule die Spannfeder fehlte, die für das Funktionieren aber unbedingt erforderlich ist, da sonst die Fadenspannung nicht stimmt.

Also ersteinmal nackig gemacht, dieses Wunderwerk.
Naehmaschine

Das hatte wohl vorher keiner erkannt, und somit wurde die Nähmaschinenmechanik durch entsprechende planlose Reparaturversuche völlig verstellt und dann zum Müll gestellt.
Da ich an dieser Technik auch kein Fachmann bin, hat es natürlich auch einen Nachmittag gedauert bis ich so langsam erkannt hatte wie das alles funktionieren muss, und wie eingestellt sein müsste, damit es wieder korrekt funktioniert.

Eine passende Spulenkapsel für die Unterfadenspule, und dazu ein paar passende „Wickelkörper“ (Leerspulen) für den Unterfaden habe ich dann bestellt, und eine Woche später im Briefkasten gehabt. Dann konnte ich also „am lebenden Objekt“ noch soweit optimieren das alles passt.

Dabei habe ein eine Sache völlig unterschätzt: Wie fein das alles zueinander passen muss, damit es wirklich richtig funktioniert.
Besonders an einem Detail habe ich lange herumgefummelt:
Naehmaschine

Die Nadel taucht mit dem Faden durch den Stoff nach unten zum Unterfaden, wo kurz nach dem „unteren Totpunkt“ der Nähnadelbewegung, während die Nadel also schon wieder ca. 2mm nach oben gezogen wird, eine kleine Fadenschlaufe sich bildet, die von dem rotierenden Mitnehmer eingefangen und über die Unterfadenspulenkapsel geführt wird, um die beiden Fäden zu verschlingen.
Der Abstand zwischen Nähnadel war bei mir knapp einen halben millimeter, und beim Trockentest und auch beim langsamen Nähen hat es so funktioniert. Sobald man aber mehr Geschwindigkeit wagte, wurde der Faden nicht mehr zuverlässig gefangen.

Am Ende bekam ich dann heraus, das der richtige Abstand etwa 1/10mm ist. Damit funktionierte es dann auch. Allerdings sieht man an dem Punkt auch, warum die Nähnadeln oft kein allzu langes Leben haben. Zieht man beim Nachführen des Stoffs etwas zu stark, verbiegt man durch die Spannung die Nadel leicht um 1 oder 2 zehntel millimeter, und dann wird nicht der Faden, sondern die Nadel aufgegriffen….
Ist sie dann erst etwas krumm, schlägt sie dann mit ihrer Spitze irgendwo ein, wo sie nicht hingehört.

Dennoch ein lehrreiches Reparaturprojekt mit erfolgreichem Abschluß.

Staubsauger Ersatzrad

Ein Kärcher Staubsauger hat eines seiner 4 Räder verloren und wollte nicht mehr gut fahren, außerdem stand er nicht mehr stabil und kippte immer wieder in Richtung des fehlenden Rades.

Das ist natürlich ein unhaltbarer Zustand, der beseitigt gehört.

Ohne nach Originalersatzteilen zu suchen habe ich ein neues vereinfachtes Rad konstruiert.

Um die stabilität zu erhöhen, wird in die senkrechte Achse eine M4x60 Schraube eingedreht die gleichzeitig unten im Block über ein Lager (Scheibe aus SAN) die Bauteile zusammenhält. Oben ist einfach nur eine kegelige gleitlagerung.
Die Radscheiben sind mit einer Schaftschraube mit 6kant-kopf zusammengehalten, die gleichzeitig die Achse bildet und im anderen Rad in einer selbstsicherndern Mutter sitzt.

Die senkrechte Achse habe ich aus PET gedruckt um die Bruchfestigkeit zu erhöhen, die restlichen Teile aus ABS.

Das Ersatzrad passt auf anhieb.

Akkuschrauber reparieren? Bruch Lagergehäuse

Ich habe auf Youtube folgendes Video gesehen:

Dieses Video beschreibt das Problem, wenn das Lager der Welle des Bohrfutters abgenutzt ist.
Da mein alter Makita-Akkuschrauber auch so ein Problem hat, und ich im Video bereits das Bronzegleitlager sehen konnte, wollte ich dieses nun austauschen. Vermutlich ist es ein einfaches Normteil, welches nur ausgepresst werden muss, um ein neues einzupressen.
Da das Lagermaterial deutlich weicher als die gehärtete Stahlwelle ist, sollte das eine sehr deutliche Verbesserung bringen, da die Welle selbst kaum abgenutzt sein sollte.

Also habe ich angefangen den Schrauber zu zerlegen, um dann festzustellen das erstmal das Bohrfutter runter muss. Das kenne ich schon, innen ist eine mit Schraubensicherung festgeklebte Linksgewindeschraube in eienr zentrischen Gewindebohrung der Welle, die das auf dem äußeren Rechtsgewinde aufgeschraubte Bohrfutter zuätzlich arretiert.
Also eine typische mechanische Verbindung wo man nur rangeht, wenn es gar nicht anders geht.

Irgendwie habe ich es doch noch los bekommen, und dann den Motor vom Getriebe getrennt, das vordere Teil (Drehmomentversteller) abgeschraubt, und da war der Fehler verschwunden.
Die Welle wackelte nicht mehr.

Also das Ding genauer angesehen. Offenbar hatte sich durch die Gewaltanwendung beim Lösen des Bohrfutters da irgendwas geändert.
Beim genauen Hinsehen (bei mir ist das Teil schwarz) stellte sich heraus, das zwischen dem Getriebe und den beiden Lagern das Konstruktionsteil einmal ringsherum eingerissen war, und durch die ganze Aktion sich das Bruchstück verdreht hatte und festklemmte, weshalb es nun nicht mehr wackelte.

Na so ein Mist, das Lager war völlig in Ordnung, der Halter dagegen gebrochen. Einer der tieferen Stürze von der Leiter muss wohl den Schaden verursacht haben.

Das Teil selbst ist aus Polyamid mit Glasfaserverstärkung.
Mit was klebt man wohl sowas, fragte ich mich. Aber irgendwie ist kleben, nunja, an dieser Stelle, einfach zu leihwändig.
Man müsste es verschweißen. Verschweißen wie man Plexiglas mit einem Lösemittel kleben kann. Oder wie man ABS-Teile mit einer Pampe aus in Aceton aufgelöstem ABS zusammenfügen kann.
Das dauert zwar einige Zeit bis es voll belastbar ist, aber ergibt nach dem zusammenfügen ein Bauteil „aus einem Guß“, welches nachher keine Klebefuge mit einem Fremdmaterial besitzt.

Ob es ein Lösemittel für PA gibt, und noch dazu eines welches einen nicht umbringt oder total saugefährlich ist?

Nun, für einige Dinge gibts spezialkleber. Selbst für PVC und PLA findet man Klebstoffe mit häßlichen Lösemitteln die das Zeug verschweißen. Für PA habe ich nichts dergleichen gefunden. Wohl aber hinweise auf Ameisensäure als Primer.
Weitere Recherche ergab, das sich PA in Ameisensäure auflöst.

Das weckte natürlich meinen Wissensdurst.
So muss man erst einmal feststellen, was Ameisensäure denn so für ein Teufelszeug ist. Es ist stark ätzend, macht ganz häßliche wunden wenn es auf dem Hautgewebe einwirken kann. Es verdampft ätzende Säuredämpfe. Es stinkt stechend. Es kann explosionsfähige Atmosphären erzeugen, allerdings sind die Explosionsgrenzen deutlich handhabungsfreundlicher als bei anderen brennbaren Gasen.

Also eigentlich will man mit so kram nicht wirklich hantieren, aber wenn man entsprechende Vorkehrungen trifft und unter einem Abzug mit entsprechender Vorsicht damit umgeht, ist es handhabbar. Zumindest sind die Dämpfe schon mal kein Gift.

Also versuch macht klug. Behälter aus PP/PE sind offenbar resistent gegen den Stoff. Also habe ich eine Kleinmenge umgefüllt. Da keine passende Pipette zur Hand war, tat es auch eine Einwegspritze, haptisch scheint das ebenfalls PP/PE zu sein. Erste Überraschung: Ja, der Spritzenkörper schon, die schwarze Dichtung nicht. Die hat etwas ausgefärbt. Den kurzen Moment war es aber tolerierbar.

Außer dem Behälter und dem Lösemittel braucht es noch mehr, nämlich etwas Kunststoff zum Auflösen.
Aus Erfahrungen mit dem System ABS und Aceton weiß ich, das die Einwirkdauer von aufgepinseltem Lösemittel viel zu kurz ist, um die Oberflächen so vorzubereiten, das einfaches zusammenfügen nach dem Auftragen eine tragfähige Verbindung erzeugt.
Viel besser ist es, erst etwas Polymer aufzulösen und damit eine mäßig flüssige Lösung herzustellen, die auf die Fügestelle aufgetragen wird. Danach muss man dafür bis zum Ausgasen des Lösemittels die Lage der Teile zueinander fixieren, um ein wiederablösen zu verhindern.

Da sich dieses Konzept bereits bei schwierigen Bruchstellen bewährt hat, habe ich es auch hier angewandt.
Als Material muss dann natürlich etwas PA oder Nylon her. Nur was hat man denn so zur Hand, was aus Nylon besteht. Das erste was mir einfiel war Rasentrimmerschnur. Später bin ich dann noch auf eine weitere ergibige Quelle gestoßen: Die abgeknipsten Enden von Kabelbindern aus Nylon.

Zur schnelleren Auflösung habe ich 10cm Faden in ca. 50 Fragmente zerschnitten und dann in die Säure gelegt.
Nun löst sich das PA in der Säure noch deutlich langsamer als ABS in Aceton, hier ist Geduld gefragt.
Also in einer Viertelstunde ist da auf jeden Fall noch nichts zu erreichen.

Irgendwann war es dann soweit, das ich eine Lösung in der passenden Konsistenz hergestellt hatte.
Der Spalt mit dem Bruch wurde zunächst mit einem Pinsel direkt mit Ameisensäure benetzt, die Kapillarwirkung tat das nötige. Etwas bewegen um das Lösemittel zu verteilen. Danach Auftragen des aufgelösten Polymers auf den Spalt.

Es ist wichtig, nicht zu dicke Schichten aufzutragen, damit sich im aufgetragenen Material keine Blasen bilden. Mehrere dünne Schichten nacheinander ist kein Problem.
Um die Härtung zu beschleunigen habe ich vorsichtig mit etwas Wärme nachgeholfen:

Das blaue Material ist das aufgetragene Polyamid nach der Aushärtung. Blau deshalb, weil des aufgelöste PA blau gefärbt war.
Nach ein paar Tagen zur vollständigen Durchhärtung habe ich alles wieder zusammengesetzt. Wenn man eine nicht so stark belastete Verbindung herstellen/reparieren möchte, ist vermutlich das wiederholte Auftragen nicht wichtig. Ich wollte jedoch die Fügestelle noch durch aufbringen von zusätzlichem Material verstärken, da mein aufgebrachtes Material im Gegensatz zum Originalteil nicht Glasfaserverstärkt und somit weniger belastbar ist.

Das ist jetzt alles zwei Wochen her.
Einige male habe ich den Schrauber inzwischen benutzt zum bohren und schrauben, und bisher ist der Eindruck gut.

Wirklich empfehlen kann ich dieses Verfahren nicht. Einerseits ist Ameisensäure nicht so lustig, andererseits dauert es sehr lange bis das Teil wieder benutzbar ist, da man warten muss bis das komplette Lösemittel langsam aus dem Material herausgewandert ist. So lange ist es auch nicht ungefährlich die Klebestelle zu berühren.

Es ist machbar, aber ob man das unbedingt will hängt wohl vom Wert des zu reparierenden Teils ab.

Transparentes Material drucken

Wie transparent sind gedruckte Teile aus transparentem Material?

Die Antwort ist: nicht so besonders.

Doch hier noch die Story dazu. Ich habe von einem Arbeitskollegen ein abgenutztes und zerbrochenes Teil von einem Rollokasten bekommen. Es ist eine Führung, sozusagen ein Einlauftrichter für die Holzlamellen, wenn sie von oben von der Rolle in die seitlichen Laufschienen laufen.

Aus den zwei Bruchstücken habe ich mit Sekundenkleber erstmal wieder das Originalteil zusammengesetzt, um die Maße abnehmen zu können.

Dann daraus ein 3D Modell entwickelt. Die Materialwahl fiel auf PET, weil dieses Temperaturbeständiger als PLA, und Abriebfester als ABS, und bruchfester und zäher als SAN ist. Daß PET Material was ich da hatte, war rein, also farblos klartransparent  und zeigt ganz gut, wie gedruckte Teile aus klarem Material aussehen. (Auch wenn es bei den hier gezeigten Teilen unerheblich ist, wie sie aussehhen)

Die Stecknasen unten sind anhand der Bruchkanten auf dem Altteil rekonstruiert, wie da widerhaken dran waren ließ sich natürlich nicht mehr erkennen, da wird es etwas Klebstoff auch halten.

Die massiv gedruckten Außenwände sind so leidlich durchsichtig, die Füllstrukturen brechen das Licht und lassen die Teile weiß erscheinen, wie beim Schnee.
Nur Vasenkörper, am besten mit eiwandig gedruckter Hülls, werden transparent, wenn auch nicht klarsichtig. Die Oberflächenstruktur vom schichtweisen Aufbau des Teils verhindert die Klarsicht. Man kann die Struktur jedoch auch vom künstlerischen Standpunkt sehen und positiv bewerten.

Batavia Madmax Minitauchkreissäge (nochmal)

Ein Nachtrag zur Batavia Säge:
Die schlechten Bewertungen auf Amazon haben mir keine Ruhe gelassen, daher habe ich die Säge einmal komplett zerlegt.
Man muss dazu die Motorkohle auf der Gehäuseseite gegenüber der Seite mit den Schrauben ausbauen.
Außerdem lässt sich das Getriebe erst nach entfernen des Sicherungsringes an der Abtriebswelle öffnen, leichter geht es wenn man die Welle vorher in Richtung Sägeblattaufnahme ausschlägt.

Zum verbessern der Absaugung habe ich die Luftschlitze neben dem Sägeblatt mit Gewebeklebeband verschlossen, damit die Späne nicht dort hinausfallen, sondern von der Absaugung erfasst werden.

Doch weiter zum Getriebe:

Ich habe bei meiner Maschine keinen erhöhten Verschleiß feststellen können. Viel habe ich sie bisher aber auch noch nicht verwendet.

Ich habe um das Gewissen zu beruhigen noch einen ordentlichen Batzen frisches Graphitfett auf die kritisierte Stelle gemacht, und alles wieder zusammengebaut. Es wird sich zeigen sie lange es hält.

Die richtigen Sägeblätter haben übrigens 85-90mm Durchmesser und 10mm Aufnahmeloch.

Staubsaugeranschluss Pollin Batavia Mini-Tauchkreissäge

Ich hatte mir vor einiger Zeit nach einem relativ positiven Testbericht zur Dremel und Batavia Mini Tauchkreissäge beim Pollin Elektronikversand die Batavia 600W Mad Maxx Multi Tauchkreissäge gekauft.

Eine normale Handkreissäge hatte ich bereits, ich brauchte aber eine kleine um in einer verwinkelten Ecke eine Gipsplatte genau in die Tiefe einzuschneiden, dass die Darunterliegende unbeschädigt bleibt.

Das hatte dann auch mäßig gut funktioniert, es zeigte sich jedoch das die Staubabsaugung keine müde Mark wert ist. Beim Schneiden der Gipsplatten wurde nur ein kleiner Anteil des Staubes überhaupt erfasst, da die Absaugöffnung am Schlauchanschluß sehr klein ist.

Zusätzlich ragen in den ohnehin schon winzigen Anschluß noch Verriegelungsnasen des Schlauchanschlusses hinein. Hier hatte sich dann auch gleich eine Verstopfung gebildet so dass überhaupt nichts mehr abgesaugt wurde.

Das geht so nicht, also habe ich da mal was gemacht.

Weiterlesen

defekte(?) HP Docking Station 1YR

Product #: 469619

Fehler: Laptop lädt nicht auf der Docking Station.
Verschiedene Netzteile erfolglos ausprobiert.

Fehlersuche im Gerät: ein Mosfet schaltet die Ladespannung nicht auf die Stromkontakte des Dockinganschluß.
Ursache unklar.

Es hat sich dann nach Hinweisen aus dem Internet herausgestellt, das diese Dockingstation nicht mit dem 65W Originalnetzteil vom Notebook läuft.

Ein Gebrauchtteil von ebay, 135W 19V 7.1A (HSTNN-HA01) hat dann für korrekte Funktion gesorgt. Es gibt noch ein stärkeres mit 150W, das ist aber scheinbar nicht von nöten, oder nur für die große Dockingstation mit eingebauten Laufwerken.

Arduino Mega 2560, AMS1117, ATMega CPU. Teil 2 – Firmware

Nachdem nun mechanisch alles in Ordnung gebracht wurde, kommt der zweite kniffelige Teil.

Mein Arduino Mega war noch über Seriell ansprechbar, daher wird hier nur die CPU selbst beschrieben, nicht der USB-Seriell-Wandler (Atmega18U2, CHG340 oder was eben so auf dem Board ist)

Es wird benötigt: Ein Programmer für Atmel 8-bit CPUs.
Software, Arduino IDE.

Ich habe folgende Tools:
UsbASP (fischl.de) als Programmer
AVR8-Burn-o-Mat als Frontend
Arduino-IDE 1.06 „classic“
Google 🙂

Neben der CPU sieht man einen ICSP-Anschluss aus einer 3×2 Pfostensteckerleiste. Das ist standartisiert, wer dazu noch keinen Adapter hat kann sich das googeln.

Die CPU ist nun noch komplett nackig, es fehlt der Arduino Bootloader und die passende Konfiguration in den Fuses-Registern.

Also ran an den ISCP-Anschluss, auf Pin1 aufpassen und UsbASP anschließen.
AVR8-Burn-o-Mat starten (Unter Linux: als Root, sonst hat das Programm keinen zugriff auf /usr/bin/avrdude, ggf. config anpassen um den korrekten Pfad zu ARVDUDE einzutragen. AVRDude wird dann auch als Root ausgeführt was wichtig ist für den Zugriff auf die USB-Hardware).

Zunächst müssen die FUSES gesetzt werden. Der Prozessor ist noch langsam und es ist zu empfehlen den Jumper für langsame Prozessoren am UsbASP zu stecken.
Google liefert dazu diesen Treffer:
http://www.codingwithcody.com/2011/04/arduino-default-fuse-settings/

Arduino Mega 2560
Low Fuse 0xFF
High Fuse 0xD8
Extended Fuse 0xFD

im AVR8-burn-o-Mat wählt man also den AVR-Type ATmega2560 aus, daneben ist der Button „Fuses“.
Der öffnet ein Dialogfeld mit vielen optionen.
Da wir schon wissen welche Hexwerte gebraucht werden wird der Reiter „Fuse HEX Editor“ gewählt und die 3 Werte eingetragen.

Apply anklicken, dann oben „write Fuses“.
Die Ausgabe von AVRDUDE im Programmfenster beobachten, ob es geklappt hat.

Nun alles einmal abstecken und wieder anstecken, damit der Prozessor neu startet, am UsbASP den Jumper 2 wieder entfernen, sonst dauert das schreiben des Bootloaders sehr lange.

Jetzt kann das AVR8DUDE wieder zugemacht werden.
Wir brauchen nun die Arduino-IDE. (unter Linux wieder als Root)

In der Arduino IDE nun im Menü Tools wieder das Board „Arduino Mega2560“ auswählen. Dann den Programmer UsbASP auswählen, und im Menü Tools „Bootloader installieren“ starten.
(Ausgabe in der Statusleiste beobachten)

Nun ist der Arduino Mega wieder einsatzbereit und kann ganz normal über die IDE per „upload“ programmiert werden.

Arduino Mega 2560, AMS1117 Spannungsregler und CPU Teil 1

Nun wieder mal was neues..
Ich hatte mich HIER ja bereits zu dem ganzen Ärgernis ausgekotzt.

Nun habe ich zwei tote Arduino Mega hier liegen, und gestern kamen aus China neue CPUs. Die kosteten etwa 4,70 E pro Stück, während die hier für 11,50 feilgeboten werden. Für 7,40 E gibts aus China einen komplett neuen Arduino Mega.

Aber es geht ja ums Prinzip, wegwerfen kann ja jeder.

In beiden Fällen ist bei meinen Arduinos die CPU zum Teil gestorben, der ADC ist kaputt, die CPUs verbraten viel mehr Strom als sie dürfen und erhitzen sich entsprechend.

Ursache ist in beiden Fällen die Stromversorgung gewesen. Beim Teilnehmer 1 habe ich die Beleuchtung des angeschlossenen Displays stark flackern sehen als der Atmega kaputt ging. Der Spannungsregler fing an zu schwingen.
Daraufhin habe ich am Ersatzboard noch einen zusätzlichen Kondensator (0805-SMD) direkt an die Beinchen des Spannungsreglers gelötet. Außerdem wurde auf die Platinenunterseite direkt auf die Durchkontaktierungen ein kleiner Kühlkörper geklebt. Die Eingangsspannung wurde schon im Sommer von 12 auf 10,5V gesenkt um die Verlustleistung zu begrenzen. Im prinzig ging es dem Regler also gar nicht so schlecht.

Der zweite Teilnehmer hat nur ein paar Tage durchgehalten, da hatte der Spannungsregler dann gleich komplett auf Durchzug geschaltet und die 10,5V auf die 5V-Elektronik gebrückt. Das hielt auch gar nicht lange an, denn nach kurzer Zeit sprengte sich der vorgeschaltete Schaltregler mit einem lauten Knall in die Luft.

Wegen der hohen Spannung hatte diesmal nicht nur der Atmel-CPU einen Schaden, sondern sind auch 4 Motortreiber kaputt. Leider waren da auch teure Silent Steptick dabei. Also 40-50 Euro Schaden und der Aufwand das ganze Elend wieder instand zu setzen.

Also gestern den ersten kaputten Arduino mega zur Brust genommen.
Als kleine Schwierigkeit ist noch zu erwähnen, das der Chip 100 Anschlüsse hat, die sehr eng zusammen liegen.

Hinweis: Bitte denkt an statische Aufladung beim Hantieren mit den CPUs. Wenn ihr keine geeignete Arbeitsumgebung (ausreichend hohe Luftfeuchte, Baumwollklamotten, unlackierter Holztisch, keine Plastestühle) habt, dann Anstistatikmatte, Armband und so nicht vergessen)

Nun zur Instandsetzung: Wie bekommt man das Ding überhaupt herunter, ohne die Leiterplatte zu beschädigen.
Es gibt zwei praktikable Methoden:
Methode 1: Vorwärmen und dann mit Heißluft alle Löstellen auf einmal flüssig machen. Dazu braucht man eine spezielle Düse oder gleich die ganze Reworkstation, ich habe beides nicht.
Dann bräuchte man eine Siebdruckmaske um Lötpaste aufzubringen und könnte es mit Heißluft wieder verlöten.
Deshalb habe ich die archaische Methode 2 angewandt:
Abflexen von 3 Pinreihen direkt am Chip mit dem Stabschleifer (Dremel ect) mit mini-Trennscheibe. Aufpassen das man nicht bis auf die Platine kommt.
Die vierte Reihe kann man dann mit viel Zinn benetzen und über die ganze Breite auf einmal ablöten. Mit Entlötlitze die ganzen Reste entfernen.

Dann muss der neue drauf. Eine Ecke ist etwas mehr schräg „abgeflacht“ als die anderen 3, das dient als Orientierung für die richtige Montagerichtung.

Ein kleines Pad verzinnen, den Chip auflegen und positionieren und ein Beinchen anlöten. Kontrollieren ob alles fluchtet. Dann ringsherum reichlich Flussmittel auf die Beinchen auftragen und mit Lötzinn alles anlöten. Es werden sich bei unter 0,5mm Abstand eine Menge Lötzinnbrücken
bilden, was sich nicht vermeiden lässt.

Nun mit Entlötlitze alles überflüssige Zinn entfernen. Dann alles mit dem Mikroskop kontrollieren. Mit bloßem Auge kann man das gar nicht sehen ob alles passt. Ich habe zum Beispiel dieses olle Beinchen nicht gesehen, weil je nach Licht/Blickrichtung es nicht geglänzt hatte.
Die kleinen Strukturen sind leider schon recht nah an der optischen Auflösung unserer Augen. Gesehen habe ich nur den Versatz der Beinchen auf einer Seite.

Mit dem Auge sieht man etwa das hier:

Mit dem Mikroskop dann schon eher das hier:

Da hing wohl ein abgetrenntes Beinchen noch in der Entlötlitze, und hat sich zurück auf die Platine gemogelt.

Fehler dann entsprechend nochmal nacharbeiten, wenn nötig direkt unter dem Mikroskop.

Nun mal vorsichtig mit dem Labornetzteil mit Strombegrenzung bei 50mA das Teil an den Strom bringen. Geht das Netzteil in Strombegrenzung ist noch was faul.