„China“-Lasergravierer (2)

Weiter gehts mit dem Lasercutter.

Nach dem Auspacken habe ich folgendes unternommen:
Durchmessen des Schutzleiteranschlusses zum Metallgehäuse, denn das Gerät funktioniert mit Hochspannung. (war ok <1 Ohm)
Kontrolle aller elektrischer Anschlüsse am Netzteil (Schraubklemmen festdrehen)
Wasserpumpe ausprobieren (läuft)
Lüfter ausprobieren (läuft).

Für Wasserpumpe und Lüfter sind amerikanische Stecker und Steckdosen verwendet worden, das entspricht so nicht der CE norm, funktioniert aber. Gegenüber unseren Anschlüssen ist der Berührungsschutz verringert weil die blechkontakte der Stecker an der Steckergehäuseseite nicht diese 5mm isolierung haben, wie es an den moderneren Schuko/Eurosteckern üblich sind, und man mangels eingesenkten Steckdosen auch leichter mit dem Finger heranreichen kann. Auf der Rückseite vom Gerät und außer Reichweite bei normaler Gerätebedienung kann man das so hinnehmen.

Die Wasserpumpe ist nichts besonderes und soweit in Ordnung, es werden wechselnde Fabrikate mitgeliefert (also selber prüfen).

Nun zum Lüfter: Der Klemmkasten vom Lüftermotor gehört überarbeitet.
klemmkasten
Die Leitungen sind nur zusammengerödelt und mit Glasgewebeschlauch isoliert.
Da könnte man wago 221-klemmen nachrüsten, oder allermindestens mal einen Lötpunkt drauf machen. Zugentlastung ist am Kabel dran, ansonsten also soweit ok.

Das Thema Lüfter ist an der Stelle aber noch nicht beendet, da hier verschiedene ähnliche Modelle mitgeliefert werden. Der Unterschied ist, ob das Lüftergehäuse flach ist, oder aus einem 2-3cm Kasten besteht. Ich habe das flache Modell bekommen, was leider nicht so gut ist. Denn der Luftauslass aus dem Lasergehäuse hat nur wenig Überdeckung mit dem Lufteinlass vom Lüfter, und es ist gar kein Platz damit die Luft so richtig von einem Loch zum anderen kommt.
Zudem ist die Befestigung sehr lose, was dafür sorgt das der Lüfter von sonstwoher Luft ansaugt, statt aus dem Laser.

luefterrahmen

Das Problem habe ich mit einem Rahmen aus speziell dafür angefertigten Profilen aus dem 3D-Drucker gelöst. Dabei wird die Befestigung verbessert, die Luftspalte auf ein erträgliches Maß verringert und außerdem noch Platz geschaffen damit die Luft zur Ansaugöffnung des Lüfters gelangen kann.
luefterrahmen
Oben kommt dann noch ein entsprechendes Abdeckprofil drauf. Das fehlt auf dem Foto noch, aber so kann man besser sehen das da jetzt „Luft“ ist für die Luftströmung. Der Lüfter wird einfach in die Kunststoffprofilschienen von oben eingeschoben.

Für den Luftschlauch (Öffnung zu weit) habe ich einen dünnen Zwischenring hergestellt, es geht auch einfach mit Gewebeklebeband. Zum ersten Funktionstest also den Schlauch aus dem Fenster und los? Nein, es fehlt ja noch das Wasser.

Die Glaslaserröhren sind wassergekühlt. Also die Wasserpumpe angeschlaucht, in einen Eimer gelegt, Wasser rein und los.

Dabei kommen natürlich Fragen auf:
Wie warm darf das Kühlmittel werden?
Wieviel Wärme muss abgeführt werden?
Welche Kühlflüssigkeit..?

Eine Internetrecherche brachte verschiedene Angaben zu Tage.
Zunächst: Blankes Wasser führt zur Bildung eines Biofilms in den Schläuchen und ein offener Behälter zieht alles mögliche an. Das ist nicht so gut. Das mindeste ist Destilliertes Wasser, auf meiner Pumpe bildete sich nach 2-3 Tagen aber trotzdem ein schmieriger Film. Deshalb ein wenig Kühlerfrostschutzkonzentrat fürs Auto ins Wasser geben, damit da nichts wächst was den Kühlkreislauf beeinträchtigen kann.

Wie warm: Zimmertemperatur, und möglichst nicht mehr. Man hält sich bedeckt wieviel noch zu tolerieren ist. <30grad wird wohl noch in Ordnung gehen.

Wieviel Wärme?
Der Wirkungsgrad von CO2 Lasern beträgt ca. 10%. Also wenn da 40W herauskommen, dann würden da 400W-40W, also 360W wärme mit dem Wasser abgeführt werden müssen. Realistisch sind die kleinen Laserrohren in den 40W lasern bei der Leistung bereits überlastet (auch wenn ein echtes 40W lasernetzteil darin ist) und würden bei diesem betrieb sehr schnell altern. Man möchte sich also aufgrund der Lebensdauer der Röhre auf ~15mA Strom beschränken, das Netzteil brächte 25mA maximal, die Betriebsspannung ist ca 20kV.

Also ganz grob kommt da 0.015A*20kV = 300W leistung in die Laserröhre, und davon müssen 270W mit der Kühlflüssigkeit abgeführt werden.
Hat man also einen Wasserbehälter mit 5 Liter Wasser (4,1kws*5L*8 grad) kann man bei 22 grad Zimmertemperatur ca. 600 sekunden (=10 minten) lang die 270W Abwärme in das Kühlwasser abführen bis es sich auf 30 grad erwärmt hat. Dabei wird die Wärmeabgabe an die Umgebung über Schläuche und Reservoir einmal außer acht gelassen.
Jetzt kann man also seine eigenen Einsatzszenarien anlegen und grob mit 5L pro 10 Minuten als Faustformel die Größe der Wärmesenke dimensionieren.
Es geht natürlich noch anders, aber dazu später mehr.

Die „teuren“ Markengeräte verwenden übrigens Röhren aus Metall mit Kühlrippen, die ihre Wärme an die Luft abgeben können.

Was passiert wenn der Kühlkreislauf versagt: Die Enden der Laserröhre erhitzen sich soweit, das sich die Klebestellen der justierten Laserspiegel erweichen und die Spiegel sich verstellen. Das kann in gewissem maße reversibel sein so lange es nur die Wärmeausdehnung des Klebers ist (falls man das schnell genug bemerkt), wird es zu heiß ist die Laserröhre defekt und muss ersetzt werden.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert