Arduino Mega und die Hitze

Zur Zeit ist es sehr warm hier.
Und diese hohen Umgebungstemperaturen verschlechtern natürlich auch die Wärmeabfuhr aus unseren elektrischen und elektronischen Geräten. Davon bleibt auch der 3D Drucker nicht verschont.

Als Elektronik für meinen selbstgebauten Drucker habe ich auf RAMPS 1.4 gesetzt. Dabei kommt eine fertige Mikrocontrollerplatine mit einem ATMEGA 2560 zum Einsatz, die im Arduino-Projekt als offene Hardware entwickelt wurde. Es ist also alles nötige „drumherum“ fertig auf einer Leiterplatte, so daß man sich ganz auf die Projektbezogene Elektronik konzentrieren kann, wenn man ein Embedded-Projekt umsetzen möchte.
Über standartisierte Steckkontakte kann dann die weitere Elektronik angeschlossen werden.
An der Stelle kommt dann RAMPS ins Spiel, eine Erweiterungsplatine die alles enthält um die elektrische Peripherie eines 3D Druckers anzuschließen. Auf der RAMPS Platine befinden sich die Leistungsschalter für die Heizungen vom Druckbett und Heizdüse, und auch weitere Sockel für Motortreiber. Außerdem Anschlüsse für die Temperaturfühler und Endschalter.
Auch kann man ein Display anschließen. Und hier wird es interessant.

Die Arduino-Platine besitzt einen Linearregler um die 5V Spannung für die Elektronik zu erzeugen, und der setzt die Spannungsdifferenz zu den üblichen 12V in Wärme um. (Bei mir von einem Schaltregler aus der höhren Spannung von Heizbett und Motoren von ca. 30V erzeugt)
Da die Arduino-Leiterplatte mit SMD-Bauteilen bestückt ist, hat der Regler also nur die Kupferbahnen der Leiterplatte selbst zur verfügung, um seine Wärme loszuwerden. Das funktionierte ganz gut, so lange die Temperaturen angenehm waren.
Jetzt sitzt der da natürlich ziemlich eingeklemmt. Die RAMPS Erweiterung selbst wird ziemlich warm durch die Leistungstransistoren, und die Motortreiber heizen von oben und natürlich auch per Wärmeleitung über die Pfostenstecker zusätzlich ein. Dazu habe ich ein LC-Display angeschlossen welches für die Beleuchtung noch zusätzlich den Strombedarf auf der 5V Schiene erhöht.
Das war dann alles zu viel, der Spannungsregler erreichte seine Maximaltemperatur und der integrierte Übertemperaturschutz reduzierte den bereitgestellten Strom. Daher sank die Spannung. Sichtbar wurde das an der LCD Beleuchtung. Und natürlich stimmen dann auch die eingelesenen Werte der Temperaturfuhler nicht mehr.

Daher musste nun die Situation verbessert werden.
Bisher war nur ein kleiner 24V Lüfter mit 12V versorgt (wegen dem Lärm, da der immer mitläuft) auf der Rückseite mit einer Papierklammer „Foldback Clip“ so hingetüddelt. Das ist natürlich nicht so optimal, weil in dem Leiterplattenstapel die unterste Platine mit dem Spannungsregler so fast gar nichts davon hat.

Das sah so aus:
kleiner 24V Lüfter kühlt RAMPS Elektronik

Nun muss das also besser werden:
Dazu habe ich zwei Dinge verändert. Die auftretende Abwärme beim linearen Spannungsregler ist direkt abhängig von der zu überwindenden Spannungsdifferenz. Also ist es günstig, diese zu reduzieren. Das könnte man mit einem Widerstand tuen, der aber jedes mal geändert werden muss, wenn man etwas umbaut und der Strombedarf auf der 5V Schiene sich ändert. Zu wenig Spannung vor dem Regler ist auch schlecht, weil diese Regler je nach Typ etwa 2V höhere Spannung am Eingang brauchen, um die Ausgangsspannung ordentlich einzuhalten.
Besser gehts mit Halbleiterdioden. In Durchlassrichtung hat man über jeder Silizium-Diode etwa 0,7V Spannungsabfall. Ein paar davon in Reihe reduziert die Spannung ein Stück, und nimmt damit ein Teil der entstehenden Wärme vom Spannungsregler und verschiebt sie dafür in die Dioden. Die Dioden halten höhere Temperaturen aus und brauchen keine speziellen Maßnahmem zur Kühlung.
Also 4 Dioden zusammengelötet und in die Zuleitung zum Arduino Mega eingeschliffen. So werden aus 12V dann 9V, und der Linearregler hat statt 7V nur noch 4V zu verbraten. So wird seine Verlustleistung fast halbiert.

Da ich damit keinen Schönheitspreis gewinnen muss, hab ich das einfach mal so hingetüddelt.
Dioden am Prusa I3

Und nun zur zweiten Maßnahme:
Die Verbesserung der Luftkühlung.
Um den Luftstrom besser an der Elektronik zu halten, habe ich eine Plexiglasscheibe zugeschnitten und über die Elektronik geschraubt. Zusätzlich gibts einen leisen 12V Lüfter mit 60×60 mm, der einen deutlich höheren Luftstrom erzeugt als der kleine Lüfter vorher. Der wird nun auch noch mit einem kleinen gedruckten Haltewinkel so montiert, das er auch die untere Leiterplatte im Stapel mit anbläst.

Mini-Luefterhalter
Der Drucker fertigt also seine eigenen Teile zur Verbesserung der Konstruktion. 🙂

Fertig zusammengeschraubt sieht das dann so aus:

Mini-Luefterhalter

Die Instabilitäten der 5V Spannungsversorgung sind damit hachhaltig beseitigt.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert